Using spatiotemporal correlations to learn topographic maps for invariant object recognition.

نویسندگان

  • Frank Michler
  • Reinhard Eckhorn
  • Thomas Wachtler
چکیده

The retinal image of visual objects can vary drastically with changes of viewing angle. Nevertheless, our visual system is capable of recognizing objects fairly invariant of viewing angle. Under natural viewing conditions, different views of the same object tend to occur in temporal proximity, thereby generating temporal correlations in the sequence of retinal images. Such spatial and temporal stimulus correlations can be exploited for learning invariant representations. We propose a biologically plausible mechanism that implements this learning strategy using the principle of self-organizing maps. We developed a network of spiking neurons that uses spatiotemporal correlations in the inputs to map different views of objects onto a topographic representation. After learning, different views of the same object are represented in a connected neighborhood of neurons. Model neurons of a higher processing area that receive unspecific input from a local neighborhood in the map show view-invariant selectivities for visual objects. The findings suggest a functional relevance of cortical topographic maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Spatio-Temporal Correlations to Learn

16 The retinal image of visual objects can vary drastically with changes of viewing angle. 17 Nevertheless, our visual system is capable of recognizing objects fairly invariant of viewing 18 angle. Under natural viewing conditions, different views of the same object tend to occur in 19 temporal proximity, thereby generating temporal correlations in the sequence of retinal 20 images. Such spatia...

متن کامل

Spatiotemporal information during unsupervised learning enhances viewpoint invariant object recognition.

Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning...

متن کامل

Using Spatio - Temporal Correlations to Learn

A competitive network is described which learns to classify objects on the basis of temporal as well as spatial correlations. This is achieved by using a Hebb-like learning rule which is dependent upon prior as well as current neural activity. The rule is shown to be capable of outperforming a supervised rule on the cross-validation test of an invariant character recognition task, given a relat...

متن کامل

View-Invariance in Action Recognition

Automatically understanding human actions using motion trajectories derived from video sequences is a very challenging problem. Since an action takes place in 3-D, and is projected on 2-D image, depending on the viewpoint of the camera, the projected 2-D trajectory may vary. Therefore, the same action may have very different trajectories, and trajectories of different actions may look the same....

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2009